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Abstract

The military professional is a practically- minded individud. This is not, stereotypes
asde, the result of an inflexible, unmaginative nature, but comes from pursuing a
professon that enphasies nissbn accanplishmert alove al else. What sare nation
would want less of its protectors?

This paperis written with sucha prcical mindset ard begins with a defnition of the
most petinent aspects of Chaos Theory for military gpplications. This is kept at a
concepual level for the benefit of the rovice boking to understand the ‘big picture’
before pursuing the topic further, ard for those individuak who do not needto work a a
more mathematical leveExamples of Chaotic systems of military interest are given.

Thiswork also addessesame of the dificulties in appying this mathematical theary
metaphorically, and to socia dtuations. For, dthoughiit is ill being developed, Chaos
Theory is being exploited by military srategists, economists, political analysts, and others
with results that range from pragmaic and useful, to fanciful nonsense. The military
profesional could bkenefit from understanding some of the pifalls of potential
misapplication of Chaos Theory.

Last, this paperprovidesanopenended dscussion of howto apply Chacs Theary, by
stepping the readerthroughthe process 6 evaluating a sgtemthat is not strictly physical,

for the potential applicability of Chaos Theory.
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Chapter 1

Chaos With a Capital ‘C’

And now for something completely different.

—John Cleese
Monty Python’s Flying Circus

Everyone knows what ‘chaos is. It's a depament store an Christmas Eve, a
birthday party for two-yearolds where smeone lets a puppyloose, ard the gate your
files are in when the loss amounces anl.G. inspecion is coming in six weeks. It is,
accading to the dctionary, disorder ard canfusion. But pele often interpret that to
mean chacs is also random, urpredctable, ard urcontrollable. For systens involving
human behavior asa diving force ike those almve, thisis not a ked appoximation. But
inthe case dreal physical systens that are claatic, that assumtion is wrong. Chaos in
physical systems smply means disorde—uwild fluctuations in output—arising from non-
random causes. At first, this might seem like a trivial matter of semantics used by
persnickety math geeks ¢ ‘tak down’ to the pubbic. It isnot. The diferenceis significart
because ti concems matters of preditability and control: very important issues in a
mission-oriented profession like the military. In fact, one of the military’s most erudite
Chaologists, Glenn James, in his excellent tutorial Chaos. The Essentials for Milit ary

Applications, speciicaly defines Chaos with a capial ‘C,’ in order to highlight the



difference betweentrue mathermatical Chacs that occurs in real physical systernrs, ard the
more vernacular, ‘societal’ confusionwe’ll follow his lead.

Further, since this paper is amed primarily at the military professionals—active duty
and civilians—who don’'t need to g4 into the mathematical ‘weeds to ge their job done,
yet needsto understand the efects d Chaos, we’'ll keep he level concepual ard as on-
mathematical as practical.

While we will develop ddinitions throughout this pgper, key concepts that are critical
to understanding why Chaos Theory is relevant to the military are:

1. Chaacsis not randomness awl it does rot anse from the sane stochastic forcesthat

cause random behavior;

2. Instead,Chacs arisesfrom the sane completely knowalle conditions that give rise

to ordered, thoroughly predictable behavaespitethe disorder of Chaos itself;

3. As aresul, Chadtic systens canoften be mistaken for random systernrs, ard the

potential for well-behaved systems to become Chaotic is often not realized;

4. There is an undellying stucture to Chadtic systens that sametimes allow us to

makepredictionsabout its long-term trend, and vestyort-term behavior;

5. Some Chaatic systens canbe driven in or out of Chacs; that is, Chacs can

occasionally beontrolled

These ae old assetions, that may even seemcounter-intuitive at first. But they are
important for three easms. Frst, becauseltere ae caintless,real physical systens upon
which military lives and missions depend that are Chaotic. We will look a examples
shortly. Secand, since random systens cant be controlled ard are urpredictable, when
we migtake Chaotic behavior for random behavior we risk losing even the limit ed abilit y to
make predctions o the system This is tantanmount to aldicating cantrol. Third, whenwe

don't recaynize the pdential in wel-behaved systens to dekriorate suddetty into Chaatic

behavior, we also risk losing control.



But, what kind of military systems ae Chaotic, or could become Chaotic?
Turbulerce, for exanple, is Chaaic. Anything afected ly turbulerce, like aircraft wings,
paratroopers making a jump, water lines, lasers propagaing through the atmosphere, or
imaging to ard from space,ard so on, are sulpect to Chaatic forces. The weaher is a
Chaaic system ard aryone who flies, sals, or treks acoss asetts and throughforests is
affecied ly that Trarsient effects ike wind gusk or wawes can causea systemto go
Chaatic; this can ard hes, resuked n capszing of shps though to be stade to these
influerces. Electrical circuits can be driven in ard out of Chacs, as nany of our
communications specalists aleadyknow. Mary systens d the human body are known to
be, or suspead d being Chaatic, like krain acivity ard the thythm of the beaing heat.
And asmore is becaning known alout Chaos, a nyriad d applcations important to the
military are sprouting up. Data compression, important for satellite links, might be
accanplished by appying Chaaic aralysis to tramsmisson tecmiques. New way of
making and breaking codes are being worked on. Imagine, if you will, our enemies having
the ability to transmit code that is misaken by us for random noise! That kind of
vulnerability we just can’'t afford. In short, Chaos can show upin places wikre ane might
leastsuspect This has the pdential to caost lives,risk missons, ard give our eremes an
operational advantageélearly, Chaos is a subject worth investigating.

On the aher hand turbulerce, weater, ard other suchsystens have beenaround
forever, ard the world has rot imploded kecause Hese sgtens ween't recagnized as
Chaaic. Why the hullabaloo now? Partly because le nmathematical aspecs of Chacs
have only beenrecagnized n the last few decades. Previously, order ard randomness

were seenas e anly two world-views awaiable. If samething behaved in a disordered



fashion, it wasassured that either random forces wee at hand, or not ewerything was
known alout the system But Chacs is afundamentally dierent way of viewng reality; it
is a type d behavior that has claracteristics in common with both order ard randomness,
but is not either. This realzaion, howewer, didn't come alout urtil about 1960, with the
ground-breaking work of meteorologist Edward Lorenz.. Thus pat of the reason Chaos
Theory is only now becoming known, is that it is gill being developed in a mahematical
sense—and still has a long way to go.

But the sudden interest in Chaos Theay is alo due, in pat, to the recen
popularizaion of the sulpect by suchautors as Janes Gleick in his enightening book
Chaos Making a Naw Science (It canbe argued hat Gleick has dae for Chaos Theay
what Call Sagandid for astonomy: educa¢d aml intrigued be nmessesn a waythat no
callecion of pedatic equaion-strewn monograpts ever could.) This is good ard bad.
It's good becauseti makes Clacs accesble 0 the vast, creaive forces of callecive
human intelligence. Who knows what can ultimately come of that? It's bad because
Chaos Theay is a nethematical theary, ard like nost tools of ‘hard’ sceence doesrit
readily lend itself to ‘soft’ science gpplication. However, that hasn't stopped economists,
political scientists, sociologists, anthropologists and the like from trying to apply the
mathematical conceps of Chaos 0 ‘societal’ applcaions, often with resuks that range
from practical and useful to fanciful nonsense. This is important to the military
professonal because Cdwos Theary is becaning anincreasngly popular topic in the fields
of strategy, economics and pdlitics. The military srategist, in paticular, is likely to see
Chaos gpplied mare frequently to military issues, both meaphorically—much in the same

way Clausewiz appled Newtonian conceps like ‘certers of gravity’—and as anaralysis



tool of non-mahematical Stuaions of warfare and conflict. The military professiona
could benefit from understanding some of the pitfalls of potential misapplication of Chaos
Theay. Accardingly, this paperalso discusseshie risks n appying the *hard’ sciencetool
of Chaos Theory to ‘soft’ science military issues.

Last, this paperalso presefs a lrief exercise n how to ‘think Chaaticaly’, by waking
the readerthrough the kinds d questons to ask wiken decding if Chacs Theary canbe
applied to systems that are not strictly of the ‘engineering’ sort.

But before stepping over the precpiceinto Chaacs, soto speakthe auhor would like
to enphaske hat the scpe d this work is quite narrow; it focuses a those aspec o
Chaos which specifically deal with issues of predictability. For the reader interested in a
fuller, more in-deph treatment of Chacs Theary, the auhor highly recommendshe fine
tutorial on Chaos theary by Glem Janes, mentioned alove. Specficaly written with the
military in mind, this tutorial is amed at the average non-scientist and is very readable, as
well asinsightful. This work capitalizes heavily on James paoer, as well as the works of
Gleick ard DuBlois, also recanmend to the readerwho warts © dele deepeiinto the

‘'something completely different’ of Chaos Thedry.

Notes

! Janes, Glem. ChaosTheoy: The Esentials for Military Applications Newpat,
R.l., Naval War College, 1995, 3.

> DeBlois, Bruce. Deteministic Philosophical Assumptionsin the Application of
ChaosTheoy to Social Ezents Maxwel AFB, School of Advanced Arpower Studies,
not pulished ard Gleick, James. Chaos Making a New Science New Yok, Penguin
Books, 1988.



Chapter 2

Piercing The ‘Fog’ Of Chaos

..all action takegplace,so to peak,in a kind oftwilight, which, like fog
or moonlight,often tenddo make thingseem gotegjue and lager than
they really are.

—Clausewitz

From the gemralities presened sofar, Chacs nust cettainly seeminsidious: a sate o
disarder, masqueeding as andomness, yet arising from conditions that—post-Newtonian
common sense says—should yidd complete predictability. But what does this mean? It
seens o imply that Chacs is as rebulous aml intractade as Chusewiz's ‘fog of war.’*
But any commander worth his a her rank knows that piercing the fog of war lies in
sorting out what is, isn't, can, and smply can’t be known in battle; acing on what is
knowale; ard dealing with unawidale urknowales. In that vein, this chapeer is
intended b help the reader’pierce he fog of Chacs. By burning awaythe nebulous ard
erroneous rotions nost pele have alout Chacs Theay—in essene, seeing what is,
isn't, can ard carit be known alout Chacs in physical system—the author hopes © help
the reader learn to recognize Chaos in military systems, so as to control it when they can

control it, and deal with it when they can't.



Birds, Bass, Beetles, and Buffalo

To understand where Chaos comes from, let’s begin by looking a a well-behaved
system that becames Chadtic. Such a sytem can be found in population biology: the
study of the life and death cycles of birds, bass, beetles, and buffalo, to name a few.

Biologists are very interested in predicting fluctuations in wildlife populations. This
may seem like an enormoudy complex task, but in actudity, one smple equéion, caled
the logistics equation,appioximates doseved kehavior with great accuacy. (Milit ary
professonals deaihg with ecdogical issues suclas lase<closure clearup, or biological
issues such as hiological warfare are probably already familiar with this equaion.) We
won't explore the equdion itself in the man text; it’s explained mare fully in Appendix A.
At a cacepual level, the readeronly needs ¢ understand that the equaion allows usto
predict variation in population based anly two factors:

1. the average number of offspring per adult (a constant), and
2. the initial population.

This is aniterative equabn, meanng that having cakulated one year's population,
that value s input back nto the equabn to predict the rext years, ard soon. A key
aspectof the equabn, howewer, is a feedlack facor that depens aly on the population
value asti charges yarto year When the population becamnes too big for the local
ecosystemto suppat it, the feedlack factor danpers the pgulation. Whenit is smaller,
the feedlack ‘encourages’ higher future populations. What is most important atout this
feedlack fctor is that it introduces pnlineaity into the system This nonlineaity is not
so different from what pegle meanwhenthey descibe a rot-tempered ndividualasgoing

‘nonlinear’ if anyone even mildly disagrees with him or her, meaning that peson’'s



response was out of proportion with the stuation. Similarly, by definition, nonlinearity in
a sytem mears that the autput is not directly or inversely proportional to the input
Linear equéions contain only addition, subtraction, multiplication or division by congants.
Nonlinear operations involve exonents, trigonometric functions, ard logaithms. Ore o
the fundamenta truths alout Chaos s al Chaatiic systens ae ronlinear, but not all
nonlinear systens ae Chadic. Further, as well see dter in this paper linear systens are
never Chaatic. Marny Chadtic systens kecame so becausehey are sulpect to this type of
nonlinear feedlack, which the system carit ‘compersate’ for. The resut are wid
fluctuations characteristic of Chacs. We cansee his in ‘watching’ our population biology
example go from stable, to Chaotic.

Consider how the pulation of bass chargesasdesribed by the logistics equaion.
Assune a rearzero population initially (nearextinction) ard anawerage2.0 offspring per
adut. Figure 1 shows the resuks. Notice that the pgulation of bass ises 6 a costant
value, yearatter yearremaining the sare.” In this case athough nonlinearfeediack exsts
in the system its efects ae regligible in cases Dlow birth rates (see Apperdix A). An

individual running a ‘farm-pond’ would be happy with these results.
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Figure 1. Steady State Solution of Logistics Equationd = 2.0

But samething cuiious Feppers whenthe rumber of offspring increasego more than
3 peradut. Figure 2 showsthe cae of anawrage ¢ 3.4 offspring. Here, the pgulation
attains a peinodic patern; steady high one year, low the rext, ard so on. What's
happening is that the population rises so quickly that it initially overshoots a sable
sdution, thenfeedlack causesa depktion in the rext year But the feedlack emrourages
too much depktion, so the system agan compersaes, causing arother boom and so on
ard 90 on. Sucha suddencharge n the character of the autput is known asa hfurcaton,
arother term that frequenly appeas wren defning Chaos (@nd one that many autors
tend to misuse) A bifurcaion simply mears a dasic charge n the patern, or the
guariitative state d a system The type d bifurcation stown in Figure 2 s what is caled
period doubling, or period-2. What's very important to realize here is that the only
difference l®tweenthe seadystate sdution stown in Figure 1, ard the period doubling

that occursin Figure 2, isthat we've charged a costant, nothing eke. That is, year after



year after year we assum the awerage lass canproduce 3.4 offspring per adut. This

increase in the constant, increases the effect the nonlinear feedback has on the system.
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Figure 2. Period-2: A = 3.4

Now if we have an ewven higher offspring rate (about 3.6 offspring per adut) the
nonlinear feedlack nduces egn more dynamical charge. The perod doubles agan to
what is caled perod-4, as slown in Figure 3. Notice hat although we have fluctuating
values, like in Fgure 2, the fluctuations are seady repeatle, completely preditable.
Once we know what the first four yeas kring, ard as bng as we da't introduce
something new into the system, we can predict the bass population forever! This is not

mathematical trickery, or naive model-makirigeal populations behave this way.
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Figure 3. Period-4: A = 3.5699

What we've seernn the previous exanples d bifurcation is simply the effects of quite
manageablededback But asanyone who has ewer setup their own audo systemknows,
feedlack canbecame quite unmanagealte. When the feedlack & too large, its ronlinear
effects dominate the systens behavior. This is exacly what happers if we clarge he
birthrate in the logistics equaion to 4.0 (a mere 04 difference fom our last exanple).
The bess population begins to fluctuate widly asshown in Figure 4. Suddety we have
Chaos! It isimportant to understand that these suddenwild fluctuations have alisen from
the sane completely known types & conditions that produced he steadystate, and well-
behaved perodicity seenin the previous exanples. Why this happered in this exanple is a
matter of feedlack. Feedback i majorfactor in driving manysystemsinto Chaos The
nonlineaities which are manifest in feedlack b the sytem already exis ard small
charges n the plysical conditions of a system canmeanthe diference betweenthoroughy

characterizable systems and Chaotic systems.
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Figure 4. Chaos "sets in": A = 4.0
By the way, looking at Figure 4, we cansee wly Chaos s often mistaken for

randomness; it certainly lookandom doesn’t itAVe’'ll discuss more on that issue later.

A New World View?

The exanple alove was irst seenas caitrary to the Newtonian physics ideal of
determinism. Determinism mears that the future of ary system canbe precisely known if
eroughis known alout the canstituerts of the systemard the conditions effecting it: that
is, what the system contains, what forces ae actng on the system ard how those forces
change with time. Before Chaos Theory, scientists thought deterministic conditions
alwaysproducedcompletely predictable kehavior ard that the anly ‘options’ available to a
system was:

1. total predictability based on deterministic, characterizable, conditions, or

2. disarder, basedon random, stochastic processes. DeBlois reaty summarizes his
Pre-Chaos World View as seen in Figure 5.
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Behavior Response to Inputs Output

Causal » Deterministic » Predictable
(Order)

Free will

Non-deterministic ———  Unpredictable
(Disorder)

Random

Figure 5. Pre-Chaos World View

But the logistics equabn shows that this isn't true. In the exanple alove, all the
inputs O the system—the awerage lirth rate ard initial populaion—were completely
known. The results from that point on were smply a matter of iterating on these values.
There wee no random inputs! We knew exacly what ‘wert into’ the system why
couldn't we krow exacty what ‘cane aut? Common serse would seemto dictate that
the resuls should have beencompletely predictable. Yet, four sdutions to the exact sane
equaion, starting from the exactsane initial population, differing only by a caxstant, yield
resulks that vary from steadystate to Chacs. This resut is one o the nost significart
conceming Chacs. In fact a secad ‘truth’ of Chaos is that Chaos results from
compleely known, deerministic, conditions Chacs is not caused Y random everts ard
Chaotic systemdo not behave randomly, as we shall see.

Thus, we canamue tat Chaos s a fundanertally new way of viewing realty as
DeBlois, agan, succinctly illustrates in Figure 6. We no longer can say that redlity is
either random or completely predictable.  Why this is important to the military

professonal—amd why we cancontinue © label Chaos as msidious—s that Chacs

13



frequently ‘setsdn’ to systens that have only minor differencesin the phyical conditions

or parametersfrom completely predictable systems.

Behavior Response to Inputs Output

y Predictable
Causal » Deterministic

Chaos
(Apparent Disorder, Unpredictable

or Underlying Disorder)

(Disorder)

Fmewm\\\\\\\\\‘
/ Non-deterministic

Random

Figure 6. Generalized Post-Chaos World View

These paameters are canstants throughout the ewlution of the system (e.g., they
don't change with time).® These ae dten known as control parametes ard they are
good news for the military, or for anyone wanting to drive a system into Chaos, or prevent
Chaos from occuring. For exanple, in the basspopulation system the control parameter
was dfspring peradut. Modify that, ard the system won’'t became Chaatic, or canbe
‘pulled-back’ from Chacs. Howewer, knowing how to find these catrol pamlameters
requires more background on the nature of how Chaotic systems behave, as will be

explored in the next sections.

Butterflies and Hurricanes

Thus far we've dewvelopedtwo of the kesic truths of Chaos: al Chaaic systens ae
nonlinear, ard al Chaaic systens ae deerministic. A third besic truth that differentiates

Chaatic systens from al other systens is that all Chaotic systems are sengtive to initial

14



conditions (SIC). To understand what this means, it helps to take a short time-trip
backward to the initial ‘discovery’ of Chaos, as we shall now do.

The dewvelopment of Chacs Theary was &rgely seendipitous aml mostly unexpeced.
It wasnt that Chacs hedn't beenobsenved. For certuries experimentalists and thearists
alike knew of salde, peiodic systens suddettly detriorating into disordered, wildly
fluctuaing, behavior. But this was often blamed on poor daa collection techniques, or
incomplete knowledge of the system After al, since Newbn, the caechsm of non-
random physics wasthat of deerminism, aswe’ve dscussed alove. This world view got
a seere upsetwhen Edward Lorenz, a reseach meteorologist from the Massachsets
Institute of Technology, was attempting to computer-model weather.

He wasdoing this in 1960,when computers were gill masses of wiring and tubes, and
even purch caids wee a uxury. Nonetheless,he was naking good, if interminaldy slow
progress, having reduced be lesic forces hat drive weaher (pressue, temperature ar
wind speed)into relational equaions. His canputerized wedter behaved much as he
expeced, gererating highs, lows, jet streans, ard seasns. But he noticed tat a sat of

“orderly disorder”*

croppedup in the resuks. He was cdainly seeng long-temrm trerds—
days gaot warmer in summer, cooler in winter, gradatons in temperature signaled storms—
all just as epeced. Yet, within those germral trends, the actial patern was rever quite
the sang; the dayto dayweater predictions difered greaty, evenwhen his initial starting
points (initial conditions) seened aimost exacty the sane. Puzzled, Lorenz investigated
the paterns nore closely. One day he made te fateful decsion to study one paticular

“run” in more detail. Rather than starting the program from the beginning—a tedious task

in the face ¢ the ursophigticated camputers d the ime—he started from the middle,
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inputting the intermediate values from a previousrun hehad in hand. To his great surprise
eventhoughhe was nputting the exactvalues asheyread m the piintout, he sawthat the
patern that resuked fom this run was narkedly different from the pevous me.
Evertualy, he realzed that the intermediate values te had input from the pintout had
beentruncated, but only by a very small anount. Yet, what a brge dfference his made!
Althoughhis new ‘run’ ard the dd ‘run’ displayed paterns that had same relative degee
of complexity ard the same overall “trend,” (i.e., the ‘high’ ard ‘lows’ were of the sane
orden they were undoubtedly, ard very urexpecedl, vastly different. What Edward
Lorenz had inadwertertly stumbled aito was the pheromeron of sengtivity to initial
conditionsor SIC. Figure 7 shows an example of SIC.

Here we see two lutions to the exact same equaion. If the solution shown with a
lighter line looks familiar, that’s becausetiis the sane as kgure 4,the Claatic sdution to
the logistics equabn. The diference n the two sdutions is only in the initial value of the
population. Inthelight line the initial value d the pgulation was0.001. In the dak line
it was set to 0.000999,a diference d only one pait in one milion. But look a the
difference in paterns. After only ten time seps the two lines, which perfectly coincidein
the ealty yeass, diverge rapidly. By step 34,one equabn is predicting a hgh while the
other is predicting a low. In short, the dightest variation duing thetime-evolution ofthe
sysemresut in vasty different outcomes. Once agai, everyChaatic system is sersitive

to initial conditions. This sensitivity is a hallmark of Chaos.
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Figure 7. Sensitivity to Initial Conditions

For the sake of completeness, it should be noted that this senstivity to initial
condition is often referred to as the ‘Butterfly Effect.” This damplific ation of Chaos
Theay is often misused. The pgulanzed rotion of the Buterfly Effect goes saonething
like “if a kutterfly flaps ts wings n Philadebhia, it cancausea hurricare in Japari’ But
this notion is wrong by ore important word: ‘cause.” The butterfly doesn't cause the
hurricare. The systemmustalready have erougherergy in it to produce a hrricare. The
presere d the kutterfly merely disturbs the aleadyChadtic system which is extremely
sersitive to the smallest of charges, effecively ‘serding the systemi off in a diferent

direction than if the butterfly wasn't there. This makes it impossible to predict if the
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hurricane will occur, just like changing the initial population of bass in our logistics
equdions by one pat in one milionth made it impossible to predict in which years the
population would ‘boom’ and in which years it would ‘bust.’

This capiicious nature of Chadtic systens seerm 0 make the issue 6 predction
conceming Chaatic pheromeron seemhopekss. But it isn't—completely—hopelkess.
Thus far, the basic truths we've discovered alout Chaos lead us @ the canclusion that
despie the deterministic origins of Chaos, its nonlinear nature (often manifest in system
feedlack), ard its sengtivity to initial conditionsresults in extremely dynamic, disorderly
resuks. Thus,it is a fourth mgjor truth albout Chaatic systenrs that they ae unpedictable
except in tams of longterm trendsand occamnally in the vey short term. In the next
sectons we’ll seewhat is meart by these egepions, leaning urder what circumstarces
we canmake predictions about Chaotic systems, which lead us closer to controlling these

systems.

Other “Fashionable” Concepts

In the highly entertaining—albeit highly fandful movie—Jurassc Pak, acor Jef
Goldblum plays a self- proclaimed Chaotician. In discussing the viability of the prehistoric
thenme pak, Goldblum's characier tosses at the terms plasespace,strange atractors,
ard nore, in suchanoff-handed nanner that the pak’s creabr sumises Claos Theary is
just“aload d fashonable rumber crunching.” Sucha respase s completely reasmale.
The terms plasespace ath stange atractors cetainly appear daurting to non-
mathermaticians, causng many peqles eyes b glaze wer with disinterest But these ag

not difficult notions atthe cancepual level no matter how ‘high-faluting'—as te auhor’s
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grardfather would say—they sound. And they are recesary to understanding what Chacos
is. Thus in this section we will examine the nature of phase-space,ard then of attractors,
in peiodic systenrs. Subsequenly, we'll exrapdate these coceps to defne them in
Chaotic and random systems. This will allow usto use phase-space b reveal the hidden
structure in Chaotic systems, hence dlowing usto make limited predictions about Chaotic
behavior.

At the nost basic level, phasespace s simply a wayof graphcaly represeting the
way a system behaves. Take for example a smple, frictionless pendulum  This is a
dynamical systent in other words a sgtem that charges wih time. One way to descibe
this systemis to graph how the bob position changes from moment to noment. Consder
Figure 8. If we define the paition of the pemulum as zeio when the kob is hanging
straight down, then left of center is negaive, and right of center is positive. As time
progresses,the ob swings © one sde tenthe aher. Graphcaly this looks like a sine
wave, as shown. Most people are familiar with the sne wave as one form of periodic
behavior, so there’s no surprise here.

But a more complete way to descibe the system is to exanine tow the tme- ard
spacedepermlert propeties, or variables, of the system ewlve. The variades gves us
complete information about the condition, or state, of the pemulum at a point in time
Graphing the waythe varialdes clargewith respecto each dter is caled represening the
system in phag-space In the case Dthe pemlulum the variades ae pcsition ard
velocity. Let’s row look at how to graphthe ewlution of these arialdes in phasespace.
Consider Figure 92 In the uppereft of the figure we show the perdulum at its left-most

position (remember, left-of-certer is negative). Having traveled as high' as he erergy in
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the systemalows, the lob ‘stops’; that is, its speed ahvelocity are zep. At that instart
in time, the shte d the system canbe completely deifned as apoint in phasespace this
point has regative paosition ard zeo velocity. This paint in phasespaceis shown in the

upper-right figure of Figure 9.

N

N LIy L

POSITION *

Figure 8. The Simple, Frictionless Pendulum
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THE VELOCITY OF THE PENDULUM
IS ZERO AS IT BEGINS ITS DECENT.
WE DEFINE IT POSITION LEFT OF
CENTER AS NEGATIVE.

THE STATE OF THE PENDULUM IS
DESCRIBED BY ITSPOSITION AND
VELOCITY. AS THE PENDULUM
SWINGS RIGHT, ITS STATE EVOLVES
ALONG A TRAJECTORY THAT TRACES
OUT A PATH IN PHASE SPACE.

AT CENTER, THEVELOCITY OF THE
PENDULUM IS MAXIMUM AND ITS
POSITION IS ZERO.

AS THE PENDULUM CONTINUES TO
SWING UPWARD, ITS VELOCITY
DECREASES AND ITS POSTION
BECOMES POSTIVE.

AS THE PENDULUM
CONTINUES TO SWING BACK
AND FORTH, ITSPHASE
SPACE TRAJECTORY TRACES
OUT A CLOSHED PATH. ALL
PERIODIC MOTION IS
CLOSED IN PHASE SPACE.

Figure 9. The Simple, Frictionless Pendulum in Phase-Space
As the bob falls, it speeds up. Since it is gaing in a paositive direction, its velocity
(speedand position) increases. The sate d the system ewlves abng atrajectoly in
phasespace as slwn. Thistrajectbory traces at anorbit in phasespace. The actial state
of the system is gill a paint. When the pendulum reacles ceter, its pasition is zerwo (by
definition) and its velocity is maximum. As it rises to the right of center, the position
continues b became more positive, but the \elocity deceases. The system ewolves in

phasespace ashe pemulum swings, urtil it returns o exacty the sane spd where it
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began Whenthis happers, its trajectory in phasespace dses nto anelipse. All periodic
behavior shows up as closed loops in phase-space.

There is one more important aspectof the pemulum in phasespace we @ed b
discuss before moving anto Chaos and randomness; that of attractors. In the case bthe
frictionless pendulum, the attractor is the focus of the plasespace dbit a virtual point
about which the trajectory orbits. This is conceptudly similar to the Sun being the focus
of the abit of the Earth. But in our exanple, we assured a frictionless perdulum. In
realty, friction is alays present, ard uriess we drive the perdulum’'s motion with some
external force, it will eventudly succumb to friction and come to a complete rest. In
phasespace|ts trajectory would not close, but would spral inward urtil the bob reacled
a seadystate o zeo position and zeo velocity, as slown in Fgure 10. In this casethe
attractor literally atracts o ‘draws’ the trajectory in phasespace ¢ it. One canthink of
the attractor of a petiodic system as hat paint that the systemwould ewertualy cdlapse

to in phase-space if no external forces act upon it.

Figure 10. The Attractor of a Simple Pendulum

Now that we've explored sane of the nost fundanertal conceps of Chacs, let’s see

what they mean in terms of predictability and control.
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Putting It All Together

At the risk of beaing a horse that's dead,buried, ard decanposing; Chacs s not
randomness. Nor is it petiodicity. Hauvng looked atsome basic conceps of Chaos, we
are now in a position to see why those differences are important.

To begin, let’s first look at a random system (Figure 11) The kft figure represens
“raw” dal as t charges wih time. The rnght figure slows this data in phasespace.
Notice fow ‘jumbled’ the daa is in phasespace. This is becauserandom ewverts have
equd probability of being in any gate they can be in, from one moment to the next,
independenof the previous sate. For example, consider the classic illu stration of random
behavior: the can toss. We know that a tossedcoin has only two states available to it:
‘heads or ‘talls’. If we toss the coin a million times, half the time the coin will land on
heads and half on tails, but we cannot predict which toss will give which state. The
200550" toss has nothing to do with the first toss, the tenth toss, or even the 200449"
toss. All random ewerts behave in this urpredictable way eachstate indepemwlert of the

next. A random system (Figure 11) has no structure in phase-space.

Figure 11. Random Data in "Normal" Space (Left) and Phase-Space (Right).
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Now look at the Chaaic data (Figure 12). Agan, “raw” dat (the output as t
chargesin time) is shown on the kft, ard the carespanding phasespace pit of the daa
is slown on the right. Immediately we see wat Edward Lorenz caled an ‘ordeiy
disarder in “normal” space(left). It is hauntingly close to having a patern, ard yet siill
seens sorandom. But viewing this dat in phasespace eveabk a deaedstructure: what
looks like a cated figure-8. Within this structure the trajectories low snoothly rather
than disjointedy as hey do in the random case. In light of our eatier discussin of
attractors, the readercan see hat there appearto be two attractors in this figure (as
oppaosed to the single point attraciors in the perodic dat of Figure 9 aml Hgure 10)
Here, the trajeciory seens to be ‘drawn’ to, or attracted © orbiting aound two distinct

lobes, one to the left of center and one to the right.

Figure 12. Chaotic Data in "Normal" Space (Left) and Phase-Space (Right).
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Figure 13. Sinusoidal Data in "Normal" Space (Left) and Phase-Space (Right).

In our exanple, the atractor of this Chadic system is dual it is caled a strange
attractor. A fifth truth of Chaos is that Chaotic sysens often haw the multi-fod
attractors in phag-space called sange attactors. (Mary strange atractors ae far more
exotic than what is sftown in Figure 12. Mary are fractal in nature. And athough a
discussn of the fractal nature of Chacs is beyond the scge d this paper a lrief primer
on fractals and Chaos is given in Appendix B.)

Going back b Fgure 12 ad the addly structured Claatic da#, it isimportant to note
that viewing daa in phasespace s the first, often best tool Chadogists have for
determining random data from Chacatic dat. The impotance ofthis phenomenon cannot
be undeestimated The very fact that Chadtic dat has stucture in phasespace,ard
random dat doesnot, is why we can make @ame pedictionsabout haotic data,where
we canmake \rtualy none (short of statistical estmates) alout random data. Let’s
develop the logic of this statement.

Consider FHgure 14. Here we see bw the plasespace mit from Fgure 12 is formed
with the progresspn in time. Notice hat the trajectory is continuous arl snooth, not like

the jumbled mess we see h random dat. That's becauseas sal ealier, for random
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systens eachstate is indepenlert of the last ard so the system ewlves in a dsjointed
manna. However, Chaos is deerministic—eachstate doesdeperml on the state kefore it
sothe trajeciory has a continuity, a sart of flow to it as t evolves in phasespace. But, as
we row know, Chadic systens ae ronlinearard soeachstate canfluctuate widly from
the one kefore it (not digontinuoudy just ‘wildly’). This is what we're seeing as the
trajeciory in Figure 14 bops fom one lobe of the figure-8 to the rext. A ‘high’ in the
data corespands b a bop around the right lobe; a bw correspands © a lbop around the
left lobe. We cansee his espealy in the bottom-middle parel of Figure 14. The two
peaksin the data correspand to two loops apund the right lobe where the ane trough
shows up in the ane loop arund the kft lobe. Further, since the left ard right lobes
correspond to lows and highs in the data, there is no long-term predictability as to how
many times the trajectory will loop around one lobe before going to the other—just as
there isno longterm predictability in the pattar of the rmw data This wild meandering
around in phasespace s caled mixing and it is important to note that, while the
trajeciory may come very close to a pevious shate, the abit never closes astidoes n the
case 6 peiodic data. This is arother way of sayng Chaaic dat never falls into a
repditive patern, though sometimes small portions of the daa form paterns that are
extremely similar to other portions. It is a sxth ‘truth’ of Chaos that all trajectories of

Chaotic systems exhibit mixing in phase-space.
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Figure 14. Detailed Evolution of Chaotic Data in Phase-Space

Nonetheless,eventhoughthe dat swils around the lobes in anurpredictable way it
still stays within the bounds of the figure-8. Y et another truth of Chaosis that all Chaotic
systemsare boundedyhich is exacly what we ae seaig when we see lie figure-8: the
system is constrained within boundaries.

Thus to summarize the prvious paegrapls. the deerministic reture of Chacs
guamntees a cotinuity from one sate  the rext, which is why the trajeciory in our
exanple seens to ‘flow’ in phasespace. But the ronlinear nature mears that the clarges
are extreme, causing, in this example, wild looping from one lobe to the next.

What about another of the ‘truths we discussed earlier, that of sensitivity to initial
conditions (SIC)? SIC is ako evidert in phasespace pits. Recall that as aresut of SIC,
the dightest variation during the time evolution of the system results in vastly different

outcomes. We cansee his in Figure 15. The parmls in the left-hard column are the sane
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ones fom Fgure 12,ard they correspand to the lighter colored line in the certer figure.
When we vary initial conditions dightly we ge the darker line in the center figure. The
frames in the right-hand cdumn are the ewlutions of this daiker line in phasespace.
Notice row, in the cener figure, the ines sart at about the sane point, but very quickly
the paterns diverge. We alko see his in phasespace. Initidly, the plasespace
trajectories for both sets of daa look very smilar (top two frames in both columns). But
in the middle frameswe seethat the aiginal system spemls nore time orbiting the right
lobe, whereas the system subjected to dightly, different initial conditions spends more time
orbiting the left lobe. But the trendof the data is the same. It Hill traces ot a figure-8
patern! Thus eventhough the trajectories widly mix in phasespace we castll make
long-term trend predctions! But, because Dboth the ronlineaity in the system ard the
tendercy for Chacs to be SIC, we can’'t make predictions for more than a few iterations.
And, depeiding how extrenmrely nonlinear ard/or SIC the system is, we sanetimes cant
even do that.

Despite these limit ations, hopefully the reader can see from our little graphical foray
that there is a deinite difference ketween Chaos, randomness, ard petiodicity. Bottom
line? Chaosis less predictable than periodicity, but more predictable than randomness. It

is, as we alluded to in the first chapter, ‘something completely different.’
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Some Practical Advice on Recognition and Control

Recognition

The first stepto control is recagnition. We've seerin the last secton that one d the
easest ways to recagnize Chacs is by simply plotting the dat as a function of system
varialdes, that s, plotting the datain phasespace. But, in fairness b the reader this is the
easiest, but not the only way, nor is it always such a straightforward procedure.

What waspresetited in the eafier sectons were two-dimensiona projecions of what
canoften be multi-dimensional phasespace. For more dat with more varialdes ard/or for
incomplete dat ses, other tecmiques & aralysis need b be used. Thesetecmiques
include things ike catulating Lyapurov exponents, which are a neasuenert of how
“fast’ the trajeciories represered on a ptasespace it diverge fom eachother.® Other
means include calculating quantities with names like Hasdorf dimensions and Capecity
dimensions: represemations in enbedding spaceetc., but this is al beyond the level that a
vast mgority of military professionals need to concern themselves with. It is mentioned
here for two reasms. Frst, so as ot to leaw the readerwith the impresson that
recagnizing Chacs is aways simple. The exanples usedin the paperare completely
legitimate, but were chosen for how wel they denonstrated he chsst neture of Chaatic
systems. Second, the author wishes to caution any military professonal who may find
thenselves nvolved drecly with amalyzing Chaatic systens, or who work with
contractors who will be analyzing such systems, on two points:

1. While there is no “cookbook” for amalyzing Chadtic systens, there ae a number of

sdfitware packages deloped ly credble professonals that descibe methods ard

provide sulroutines necessar to perform systematic amalyses d Chaaic systens.
(One suchcomprehensive, abeit userunfrierdly, packagewas usedby the author
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to gererate many of the pbts in this paper)’ The not-so-subtle paint here is don't
pay to develop analissoftware before investigating which Commaercial Off- The-
Shelf (COT) or Government Off-The-Shelf (GOT) options are available
2. On the other hand, analyzing Chaotic systems is sill more at than science.
Although COT and GOT analysis packages exist, they will almost certainly require
that whomewer uses he packageshbroughy understand them ard thoroughy
understand Chaos. In other words, don't use the exiBng packageslike a
proverbial ‘black-box.’
The above cautions are the same basic ones military professionals aways apply to
analyzing military systems. However, because Cdws Theay stll has a sort of

‘mathematical mystique’ around it, these cautions are worthy of repeating here.

Control

Canwe catrol Chaos; prevert its anset or even induce i? We'll discussreasms
why we mght wishto induce Clacs slortly, but the arswerto the quesbn canwe cantrol
Chaos issometimesyes.

Recal our exanple d the logistics equabn as t appled to fish populations. Ore
pamameter, the average mmber of offspring per adut, controlled whether that equaton
producedsteadystate, petiodic, or Chaatic resuts. But, as albve, the auhor cautons
that this smple result should not be too mideading. In this illustrative case the control
parameter wasobvious. It isn't always that obvious n al cases. That doesrit meanit’s
impossble. The catrol parameters for many systens ae krown, but finding thesecontrol
parameters is also far more art than scence at the present Still, the benefits of being able
to drive a systemin or out of Chacs are obvious This is an area worthy of the military’s
attention.

Another means of controling Chaos, besides finding and ‘tweaking’ control

parameters, is throughthe introduction of transient phenomenon. Transient motion can be

31



descibed as ‘motion that has rot yet setled davn to a steadyard regular patern.”®

Allan McRobie am Michael Thompsan in Exploring Chaos give an exanple d how
sewra large, nonpeliodic wawes impacing the hull of a shp can cause lie shp to
capsze’ The auhor has faith that suchconsiderations are curently pat of our Naw’s
ship building techniques, however, military specialists who are involved with Nation
Assstarce nay find that other, less echmicaly-advarced rations nmay find this interesting.
We will give other examples of systems where considering transient phenomenon may be

important in the next chapter.

Summary

The following list summarizes he lesic defnition of Chacos that we've given in this
chapter. This list is a modified verson of James ddinition of Chaos (for a more
expansive definition see James’ tutorial).

1. ChaoticSystemsare
deterministic,
nonlinear,
sensitive to initial conditions,
bounded.
2. ChaoticSystemsre not
random,or
periodic.
3. The trajectory of Chaotic data mixes in phase-space
4. A chaotic system usually possess strange attractors, often with fractal dimensions.

Because of the nature of Chaotic systems as stated in the above list:

1. There is an urdellying structure to Chaaic systens that sometimes allow us to
make predictions about
long-termtrend behavior and,
very short-termbehavior but,
prevents us from making long-term predictions overall.
2. Some Chadic systens canbe driven in or out of Chacs; that is, Chaos can
occasionally beontrolled
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Theseare the lasic canclusions we candraw alout Chadtic Systems. The following

chapter gives some specific examples of Chaotic Systems of military concern.

Notes

! We cancetainly argue hat both sccietal chaos anl the Chacs o physical systens
are mgjor congtituerts of battlefield ‘fog.” Sucha dscussin is outsde the sc@e d this
paper but the interested readermay wish to refer to the warks o Kelly ard Mcintosh as
cited in the bibliography for relevant discussions.

% Actualy ary value ketween1 ard 3 gives the sarne steadyresut, only taking greaer
or less time to reach stability.

® DeBlois, Bruce. Deteministic Philosophical Assumptionsin the Application of
ChaosTheoy to Social Ezents Maxwel AFB, School of Advanced Arpower Studies,
not published, 3.

* Gleick, Janes. Chaos Making a Nw Science New Yark, Perguin Books, 1988,
15.

®> Adaped from Gleick, Janes. Chaos Making a Nw Science New Yok, Penguin
Books, 1988.

® Janes, Glem. ChaosTheoy: The Esentials for Military Applications Newpat,
R.l., Naval War College, 1995, 44.

’ Sprott, Julian ard Rowlards, Geage. Chaos Data Aalyzr. The Rofessional
Version New York, Physics Academy Software, American Institute of Physics, 1994.

® McRabie, Allan ard Thompsm, Michael Exploring Chaos ed. Nina Hal, New
York and London, W.W. Norton and Company, 1991, 150.

° McRabie, Allan ard Thompsm, Michael Exploring Chaos ed. Nina Hal, New
York and London, W.W. Norton and Company, 1991, 150.

19 Janes, Glem. ChaosTheol: The Bsentials for Military Applications Newpat,
R.l., Naval War College, 1995, 44.
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Chapter 3

Applications

Now that sience islooking, chaosseemsto be evegmhere... Chaos
appeas in the behaviorof the weather, the behaviorof an airplane in
flight, the behaviorof cars clugering on an expmssway, the behaviorof
oil flowing in undeground pipes No matter what the mediumthe
behavior obeysthe ame nely disovered lavs. That ralization has
begun to change the ay busnes executivesmake decison about
insurance, the way asronomes look at the slar system, the vay a
political theorists talk about the stresses leading to armed conflict.

—James Gleick
Chaos: The Making of a New Science

Hard Science

In the first chapter, the auhor made he seenmgly presunptuous satenert that there
are cauntless,real physical systens uponwhich military lives and misions depend that
are Chaotic ystems This secton sunmarizes yst a handful of these sathat the reader
can gain a sense for the breadth of such systems.

In his ook, Gleick remarked that “Turbulence was a mblem with a pedjree” It is
certainly a problem of great importance to the military. Turbulent flow affects a muititude
of military systems. How over arcraft wingsis turbulent. The Shuttle must deal with the
turbulerce atthe enire range d atmospleric canditions ard over a wide lange of speeds.

Paratroopers jumping out of airplanes ercounter not only turbulerce fom the efects o air
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flowing alound the arcraft, but, it has beensuggesed b the auhor, they might also be
affected by turbulerce caused rom previous pmpers. Turbulerce emlemc to the
atmosplere itsef, canaffect imaging from space. Ore d the Air Force’'s $ace Battle
Labs,” the Phillip s Laboratory, Kirtland AFB, New Mexico, has worked on the effects of
Chaatic turbulerce a imaging through the amosplere for aimost two decades. This
work is intrinsic to “atmospheric characterizaion, wawe front correcton ard image
processng”.! Construction of adapive optics sesors that take into accaunt turbulerce
through the atmosplere have been one d the nost significart contributions t the
military’s Space Olpect Idertificaion misson in decades.The efects o turbulerce n the
atmaosphere applies to more than just imaging. It has application to propagaion of lasers
through the atmosphere, for example.

Beyond atmosphere-related issues, turbulence flow is found in the mixing of fuels in
some missiles, in arcraft and virtudly any liquid-propdled engine. Turbulence flow is
found in water pipes that military engineers build through rugged érrain for temporary
basing ard in the ppes hat feed he water fourtain in the Rentagan.  Turbulerce affects
nearly every aspect of the military.

While the propagaion of lases through the atmosplere involves turbulerce
consderations, lasess thenselves ae afected ty nonlinear fluctuatons that appearto be
Chadic? Lasers are becoming decidedly ubiquitous in the military today, used in
applications ranging from medical to imaging to weapon building.

Other Chaotic systems of great interest to the military may be found in the human

body. Dr. Ary Gddberger of Hawvard Medical School has arguedthat “...Chaos gives the
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body flexibilit y to respond to different kinds of simuli, an in paticular that the rhythms of
a healthy heart are Chaotit.”

We have already made note of how trarsiert wawe pheromeron can effect the
stability of ships, possibly resulting in capszing. Other examples of transient phenomenon
potentially driving systems of military interest Chaotic include the effects of earthquakes
on nuclear power plarts, offshore oil platforms kuffeted by wawes, or even printers
undergoing internal vibratiotis.

Electical circuits are havens for the dewlopment of Chadtiic behavior. Almost
everyone is familiar with the significance of feedback in audio and electrical systems.
Feedlack that camot be compersaed for candrive a sgtem into Chaaic behavior ard
candrive it out of suchbehavior in electical systens just as weve seent cando in the
case 6the logistics equaibn. In his aticle Chaoson the @rcuit Board,” Jm Lesuf states
that “(anplifiers) can compare the fed-back sgnal with the aiginal, and ary difference
betweenthemcanbe used 6 correctthe autput, predicting a letter resulk....Feedlack can
be tremendoudy helpful in redudng nonlinearities. But it must be agpplied with care,
becauseaddig feedtack to a nonlinear circuit with gan is a recpe or chacs”® He
further goes on to remark that “Milit ary communication systems, for example, sometimes
trarsnit radio signals desgned D ‘hide’ in the backgound noise. These canot actualy
be random, otherwise they would not convey any information, but they should imitate real
noise as absely as p@shble to awid being noticed ly eavesdoppess. The kinds of signals
produced by ‘chaotic oscillators may be ideal for this.”” Lesurf expands on this idea in
arother nifty little aticle enitled “A Spy's Guide to Chacs,”® in which he suggess ways

of using Chaos for codemaking and codebreaking.
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Whether as a consequence of our military environment expanding outward into space
or in respase b the recen populanzaton of “catstophic scemrnos”, the sulpect of
asteroids is of increasing interest to the military. It is hypothesized that asteroids ‘ggps
(regions dmost totally devoid of asteroid such as the Kirkwood Gap which lies between
the orbits of the Earth ard Mars), are the resuk of resonances letweenthese egions ard
the abits of the plhrets—Jupier in paticular. In essene, theseregions where objects
might orbit, have been“cleaed ait’” by the “gravitational tug” of other plarets. These
regions ae rot complaely enpty, howewer, ard these gapsnclude a éw aseroids brge
ermoughto cause catstophic cansequemes f they impaced te Earth. Cakulations have
shown that “Chaotic orbits of objects at the 3:1 (Kirkwood Gap) resonances could
became eccetric erough for themto start crossig the Earth’s orbit.”® In the light of the
specticubr impact of Comet Shoemaker-Lew on Jupiter in 1994, today, a snall but
growing portion of military resources are being alocated to sudy the patential impact of
large astroids wih the Earth. This is going to have to include a casideration of the

Chaotic nature of the trajectories of heavenly bodies.

So What?

While this list has nat been exhaudive, it has hopefully given the reader a feeling for
the broad scqe d applcatons for Chacs Theary. This doesrit meanthat all military
professonals stould rushout ard becane Chaos experts. Without argument Chaos exists
in many physical systens. But the awerage piot, for exanple, doesrit need b understand
the physical causesof turbulerce a arcraft wings. He a she anly needs e wings ©

‘stay on,” but doesrit necessaly need b know why they do. Indeed,many paticulady
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practically- minded milit ary professionals might be quite unrderwhelmed with Chaos Theory
at this paint. Thus far, this paperhas keen sdely concemed with Chacos in physical
systens. Mary people don't dealwith aralyzing thesetypes of systens, so, they might
think, why should they care? The reasm is—muchto the dsmay of many Chadogists—
even though Chaos Theary is strictly a nathematical theary it is being appled to many
non-physical appicatons. Like it or not, Chacs Theay has found its way into the
philosophy of warfare, in the sam way Clausewiz appled ‘good old-fashoned’
Newtonian linear thinking when he coined the idea of military ‘centers-of-gravity.’
Furthermore, it has dso become very popular for padlitical scientists and military strategists
to appy the tenets of Chaos Theary to suchsdt-scierce issuesas palitical science ard
international relationships. Therefore, even for the military professional not specifically
concemed with physical Chaaic systens, he or she might ercounter Chaos Theay as
appled to non-mathematical systens (or at leastercounter atempts to do so. And
understanding of what Chacs Theary realy is—deerministic, non-random, nonlinear, and
so on—slould give the readerbetter insight into how vialde these aempts are. The rext
sectons briefly outline the posttives ard pitfalls of appying mathematical theary to non-

mathematical phenomenon.

Metaphor

There's nothing wrong with a good meaphor—the military loves meaphors. We
teach them at our professonal military schools and even incorporate them into our
doctrine. For example, when the early nineteenth century military drategist, Carl von

Clausawitz, introduced the idea of military ‘centers-of-gravity’ (COG) he was applying a
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metaphor of linear, Newtonian logic. In physics, the certer of mass(gravity) of a system
is that point which moves as fi the ertire mass d the systemwere concerirated there ard
all external forceswere acing only on that paint. Cument doctrine has enbraced his
metaphor passdnately, redefining cerier of gravity metaphoricaly, as “Those
characteristics capabilit ies, or localities from which a military force derives its freedom of
action, physical strength, or will to fight.”*® Thisis not abad redefinition (althougha surly
physicist could pull it apat in a heatbea). But the netaphor of the COGs des wiat it
needsto do. It forms a fame o reference kased upo a gemraly wel understood
concept, thereby facilit ating discussion and development of ideas. What more could we
want from a metaphor? Most military professionals today, especially as they reachhigher
ranks am deal more frequenly with strategic issues,recaynize the importance with
keepng up with the phlosagphy of warfare am al the nmetaphors we canmonly use.
Especally since curent doctrine enforces the reed b remain cognizart of popular
metaphors. For exanple, Jant Publicaton 5-0 requires that military planners consider
enemy and friendly COGs in the creation of campaign planning, among other'things.
What does this have to do with Chaos Theory? Smply this: Clausewitz is being
updaed. Graduaes of our profesional schools ard other military professionals dike are
re-exploring Qausewitzian COGs, as well as other metaphors that were based on the kind
of ‘Pre-Chaos World View’ DeBlois presered in Figure 5. Two of the better exanplesof
Clauswiz being rewritten in light of Chaos theay are referenced n the hbbliograpty.
They are “Modern Sdentific Metaphors of Warfare” by Pdrick Kelly 1ll, and “Qudlity,
Clausewiz ard Chacs,” by Richard Mcintosh with the latter possessig a gad sunmary

of Chaos Theory itself. Thus military professiona interested in philosophy and strategy
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of warfare are quite likely to be seeng Chacs Theary in the future. A working knowledge

of Chaos Theory should be quite helpful to those individuals.

Soft Science

Onre area d growing interest in Chaos reseach today is whether Chaos Theay—a
mahematical description of deerministic instabilit y—is gpplicable to ‘soft science’ issues
suchas ecoaomics, pditics, or scciology. In the qude beginning this chapter, we saw hat
Gleick mentions that Chacs Theary has inspred ‘“padlitical thearists tak alout the stresses
leadng to ammed canflict.” Many autors ae row writing about Chacs Theary asit might
apply to politico-military situaions. Some do s0 logically and some do not. As an
example, Alan Saperstein, is logicaly and systematically investigating the gpplicability of
the Chaos Theory to topics of military interest ranging from “Cold War” armsrace
scenarios to issues of Post-Cold War, world wide and regional pdiitical stability.”> A
professa of physics ard a member of the execuive committee n the Cener for Peace ad
Conflict Studies, Saperstein has had a Foster Fellowship with the U.S. Arms Control and
Disamanernt Agercy ard Fellowshps wih the Fullbright Foundaion and the National
Science Foundation. He is, obviously, a credble saurce, ard his thearies ae nmeking an
impact on the poalitical and military strategic planning communities. Thus as with the case
of rewriting Clausewitz, military professonals are going to see Chaos Theory applied
more frequently in the future to pditico-military issues among other such soft science
applications.

But, while it is reasonable to agpply Chaos on a metaphorical level, is it really feasble

to apply what is a mathematical theary to situatons driven by human factors, suchas
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those which fall under the regime of o called ‘soft’ sciences? That is to say, does it really
meke any sense to try to calculate ‘bifurcations in political memberships of treaty
organzatons,’ or try to idertify a hddenstructure in the Sock Market using phasespace
aralyss? The arswer to this, in pat, depens an whether or not the ‘human factor’
driving such stuaions—for want of a better term *free will —is deterministic or random.
We have said repesatedly that Chaos is deerministic. Consequently, if we believe that free
will derives from the same inherently unpredictable sochastic causes as randomness does,
we simply carit apply the methematical amalysis techiques & Chaos 0 scietal situatons
that are driven by this stochastic free will. DeBlois, for example believes this way, as
we’ve seenin Figure 5 ard Figure 6 that the auhor borrowed fom his insightful paper*®
On the other hand, there’s no proof that free will isn't deerministic. Consider the old
joke, “If are brains were smple enough for us to understand, we'd be too smple to
understand them.” Those who regard free will as deerministic could argue that thought
and free will are nothing mare than a manifestation of ‘cosmic programming’; a sort of
underlying determinism that is to complex for us to understand (that is, our brains are
basicaly computing machines diven by the sane causeghat drivesthe physical universe;
we're just not smart enough to understand how). If this were the case, and free will is
deterministic, then pehaps we can apply mathematical techmiques & Chaos Theay to
sccietal stuaions. And, if we ae alve to apply mathematical tecmiques & Chaos Theay
do apply to societal situations, what does that say about how ‘free’ free will is?

But what value ae these kinds d argunrerts to a prctical mind? If nothing else, to
show that we mnust be very careful not to blindly appy the methematical tecmiques @

Chaos Theary to sdft scienceissues. The reademeeds © keep n mind that Chaos Theary
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is a mathematics-based desdption of how real physical systens behave. We camot
expect this theory to apply to situdions that are driven by random, or smilarly stochastic
conditions. If human factors such as free will aren’t Sochastic, we might be able to apply
Chaos Theory to societal Studions. But, if free will is sochastic, then it might make no
serse to apply mathematical predictions besed o deerministic Chaos 0 such systens.
While many people may yet think of Chaos Theory as ‘fashionable number crunching,’
many believe that the real ‘smoke and mirrors may lie in the attempts to gpply it to non-
mathematical soft-scierceissues. Yet, as stategic thinkers becane more interested n the
concept of nonlinear, bounded, deterministic behavior in social Stuaions, the military
professonal is increasngly likely to ercourter attempts to appy Chaos Theay from
topics which range fom updaed Clauswitzian metaphor to the “bifurcaton in regional
politics.” Hopetully, the readeris now better prepaed © evaluaie ard/or discuss such

topics.
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Chapter 4

Thinking ‘Chaotically’

“Why,” said the Dodo, “the best way to explain it is to do it.”

—Lewis Carroll
Alice’s Adventures in Wonderland

Thus far, this paperhas focused on deinitions. But to realy understand a concept
one hes o usef, or, as Aice’s very practicaly-mindedfriend the Dodo espaised,the best
way to explain a thing is to do the thing.

How thendo we ‘do’ Chaos? How do we kamn to appl this new view o realty to
the world around us? One dovious waywould be to pick a plysical system like a wing
subjected to turbulent flow, and work through the issues of finding and controlling Chaos
in this system But first, sucha tract would be mathematicaly outside the scpe d this
paper, and second, it's likely to be of little interest to many individuds who aren’t
aespace ergineess or the like. Instead, in keepng with the sprit of Chacs keing
‘something completely different,” let us focus on doing something distinct from smply
looking at wel-known exanples. Let us bcus o proces by examining the type of
guestions that should be asked when analyzing a system for Chaos.

To do this, the author has delberately chosenanexanple o a sywtemthat, at the ime
of this writing, has ot beensystematicaly studied. The pcsitive aspectto daing this is

that we wan't be confined ty assurptions am canclusions ateadymade, but instead can
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make our own. Howewer, this appioach mears that this secton becanes anopenended
discussion, resulting (hopefully!) in more questions than answers. This tact might be

disturbing to some. Further, thisis one peson’s (the autor’s) suggesed wayof thinking

alout the issues ard thus the canclusions are a natter of the author’s judgnert. This
secton is not meart to represeim the ane ard only mears d working through the issues,
nor isit evenintended b be exhaudive. It is Smply the suggesedfirst stepson a journey

to learning a new way of thinking about the world around us Hopefully, maost will find it

an interesting exercise in learning to ‘think Chaotically.’

Thefirst risk we will take in this section is defining a system that is not a cut-and-dry
physical system, like a bridge, or engine, or arcraft. Instead, we will lo ok a a system-of-
systems. the muitiple centers-of-gravity (COGs) and paallel warfare. This is a topic of
increasng interest in the wake d Deset Storm, where the techiques ¢ parllel warfare
proved \ery successfl for the Caalition Forces. In this context, pamlel warfare mears
the ability to drike a several centers-of-gravity (COGs) in diverse locations,
simultaneoudy. This is in contrast to the notion of serial warfare which involves one
nation’s fielded forces ergagng arother’s drecty, ard atempting to ‘roll them back’
from the front lines to the interior of the battlefield.

Our ‘system’ consists of mutiple COGs; the input to the system ae targeing
decsions ard actions made by friendly forces;ard the cutput of the systemis degadaton
of enemy capabilities. Following an idea of DeBlois,” this can be expressed as shown in
Figure 16. To make this notion more quantifiable, we will use Col (ret) John Warden's
Five-Ring model to visuaize COGs as segried into five categaies, or nested rings:

leadeship, orgaric esentials, infragructure, population, ard fielded brces (Figure 17)
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This model assgns greatkr importance © striking at‘inner ring’ targets over those in outer
rings the assumption being that a nation is less likely to tokrate and/or be able to asorb
the losses bloosing ‘inner ring’ systems. The nodel assures that eachring canalso be
broken into seif-similar rings For example, a COG within the organic essentials ring
might be electrical power producion. Within the system of oil producton there ae

elements of leadership, infrastructure, and so on.

INPUTS MECHANISM OUTPUTS
Targeting Degsion Physical Damag Degadation of enemy
and Actions to COGs warmaking capabilities

Feedback

Figure 16. Test Case System

Fielded Forces
Population

Infrastructure

Organic Essentials

Leacership

Figure 17. Warden's Five-Ring Model
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To investigate the potential use of Chacs Theary for pamllel warfare, we reed a
yardstck; a nears o measue the system aganst, to decde f the piinciples of Chacs
Theay apply (either mathematicaly, or metaphoricaly). A reasmalle ‘yardstick’ might
be the basic concerns as outlined in this paper in the form of the following:

1. Is the system driven by deterministic or stochastic causes?

2. Is it nonlinear?bounded?sensitive-to-initial conditions?

3. Does the output exhibit mixing or strange attractors?

4. Are there control parameters?

We begin by asking pehaps the most important question first. Is the system driven
by deerministic or stochastic processes?Unfortunately, in this case,this is the hardest
gueston to arswerunanmbiguausly. At one exreme, we cauld saythat the input cettainly
doesrit appearto be purely random. The decsions d COGs b attack isn't decded by
flip ping coins or some other such process (even though the outcome may sometimes look
that way to the most cynical anmong us) Decbions ae kesed m strategic pditical
military, and economic choices. Further, the output effects the input; that is one state
(choice d targets) does depeth on the previous me (gffect on previoustargets). Thereis
feedlack. However,individud free will and group decision making (which has a ‘will' of
its own) greatly influences the procedure. Those who do not believe that free will is
stochastic might not be bothered by this and might conclude that this system certainly
appears to be deterministic. But those who believe free will is strictly stochastic, might
have a great deal of difficulty with believing that any system that involves free will as input
can result in quantiiable Chaos. They may believe that it isn't logical apply the

mathematical notions d Chacs Theary to ary situaion involving human decsion making.

For those individuak the arswerto whether Chacs Theary apples © ary type d warfare
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erds ltere; it does ot. Howewer, we mght argue that there is a difference betweena
system driven by free will and one that is influencedby free will, much like there is a
difference between driving forces and transient forces.

So, is our test system deerministic or stochastic? The alwve agumert is not
intended b arswer that unambiguously, but instead b ergagethe readerreachng his or
her own conclusions.

For the sake bamgunen, let’s caitinue © measue this system aganst some of the
other tenets of Chacs. For exanple, does he system exhibit nonlineaity? One might
argue hat the wery notion that sane COGs ae though to creae sulstantially greater
degraddion to an enemy’s capabilit ies than others (that is, COGs from the inner rings are
more important than from the auter rings) might be an exanple d nonlineaity. But it’s
not easyto quartify how much greaer, thus t's hard to sayif that is an exanple, even
metaphorically, of nonlinearity.

What about some other patential nonlinearities in the system? Let’s go back to our
organc essehals exanple d electical producion. Sub-ring eenmerts of this COG (which
could also be caled nodes)are suchthings as tis lkeadeship, workers, power stations,
trarsformer stations, water coming into the system ard power linesmoving the electricity
out. Suppee, for exanple the g/stem has two trarsformer stations, one which feedsa
power station and one which feeds ive power stations. If we destoy or degade he first
trarsformer station, we afect one paver station, ard if we ht the secod we destoy five.
Is this nonlineaiity? Further, eachof the degadaton of the paver stations might affect
electrical power in the villages where the workers eat, deep, and live, thus degrading their

effeciveress. Subsequen power outages cailld ako affect the rarspatation systens that

48



bring the repar crews in to repar the power stations in the first place. Thus, the
interconnectedressseens not only to represen a type d nonlineaiity, but alsois a form of
feedlack nto the system At leag on a netaphorical level there appeas to be nonlineaity
in this system. An analysis of repar rates and effects on produdion might show more
concrete, quantifiable results.

What alout boundedres? First, we calld quanify boundedress of the systemin
terms of danage Doing so would be limited by the accuacy of battle danage
assesserts (BDA), ard would ako be subect to deifnitions, such as: how much
degruction constitutes degiadaton versus degruction or how does repar ratestimes
figure into BDA. For exanple, destoying one trarsformer station isn’'t likely to destoy
the enemy’ s abilit y to wage war completely, but anything friendly forces do will have some
effect These ae exrenely broad defnitions, ard to be more precse we wald have to
actualy amlyze BDA values. The readermight ask henseles atthis point, what other
examples of boundedness exist in parallel warfare.

What alout SIC? Ore exanple might be found in going back © the daneged
transformer gations. Once the transformers are damaged, crews will r ush to repar them.
How quickly the repar crews can ge their job done will depend on a number of
conditions. Daylight versus nighttime, dry season versus monsoon, experienced va'sus
novice cew-persons could meke a \ast difference n repar rates. In fact to think of the
applicability of SIC to warfare in total one needs only be reminded of Emerson’s words:

For want of a nail, the shoe was lost;

For want of a shoe, the horse was lost;

For want of a horse, the rider was lost;

For want of a rider, the battle was lost;
For want of battle, the kingdom was lost!
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Sensitivity to initial conditions certainly seems to apply. Further, the issue of non-
periodicity seems quite clear cut. Repesting the same input, will almost certainly never
give the same output.

As for questons alout the behavior of the system in phasespace(mixing, strange-
attractors), urfortunately, there is no dai presem from which to deiive this information.
But this does lead usto the question, what variables might we be looking at is we had the
dat. Thisisanimportant quesion becausetiaddessesltte issue 6 control paameters.
For exanple, some logical control parameters of this systemwould seento be repar rates
ard frequemy of re-strikes Suppae we caild graphthe BDA of multiple COGsasa
function of how quickly the targets caild be repared \ersus how frequenly we neededo
re-attack the targets o ersure a degied level of degadaton. Would theseparameters be
emughto find structure that we cauld exploit? Could we discover, for exanple, a patern
of re-strike tempo that might help us maximize damage and minimize wasted resources.
Oris it all ‘aload of fashionable number crunching?’

Unfortunately, without data, the arsweras © whether or not our systemis Chaatic
from a purely mathematical viewpant isn't possble atthe noment. There isreasm for
regarding it metaphoricaly as Claatic. But as sated n the keginning, this secton wasrnt
intended to unanmbiguausly arswer al quesions. The system preseited was sinply one
the author thought might be worth further investigation if the daa can be found. Instead,
our purpose here wasto presert a proces for looking at systens from a Claocs pant of
view. If nothing eke, hopetlully, the readernow understands that exceptin the case b
physical or mathematical systens, appling the defnition of Chacs to sccietal situatons is

often a matter of assumptions, judgments and opinions.
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Chapter 5

Conclusions

The peacefl partnership society of our Cro-Magnon ancesors was
charactelized by the theeway coopeation of three principles Chaos
Gaia and Eos symbolizd by thetriple-headedgoddes TriVia, the
Pythagorany, andthevictory symbol that emeged dumg World War 11,
and in the peace movementtbé 1960s The healing obur planetay
sodety fromscars of the pag sx millennia, the Periodic Epoch, will be an
Orphic enterprise.We must welcome the Chaotic Epoch.

—Abraham
Chaos, Gaia, Eros

The alove quae, sady, is not a joke (uUnless be erire book is an inside pke).
Instead,it is anexanple of the increasng number of books that portray Chaos Theary as
some Grand Unifying Metaphor (GUM) for everything. The author is not attempting to
derigrate the work of Abraham, but this quate does slow why Chaos is considered ty
many to be ‘aload d fashonable rumber crunching’ at best, or a kind of theary du jour of
cocktail party scentists, at worse. Unfortunately, there is a vast swel of books an Chacs
Theay that give nothing more than lip sewice b the real undedying mathematical
principles d Chaocs. The auhor hopes hat this paperhas helped te readerunderstand
these principles at a caxcepual level, so asto be alde to judge or himself of herself when
Chaos Theay apples ard when it doesrit. Those issues lie auhor considers the nost

important for the reader to remember at the conceptual level are:
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Chaos is deterministic, nonlinear, non-random, and non-periodic;

1. It is a dfferent way of viewing realty from the previous dealthat systens could
only be completely unpredictable and randongompletely predictable;

2. Because Cdos s not random, we canoften make long term trerd predictions
about behavior, and occasionally make very short term predictions as well;

3. Chaotic systems are ubiquitousand military lives and military missions may depend
on knowing the diference letweenChacs am randomness,ard on knowing when
a previously well-behaved system may suddenly become Chaotic;

4. Military philosophers and drategists are likely to see a rise in the application of
Chaos Theory to metaphorical and soft-science issues;

5. While Chaos canbe appled logicaly at a netaphorical level, there ae many
guestions as to how amdChaos Theory can ever be applied in the soft-sciences.

Chaos is truly a different way of looking at the world around us. For some, this will
be a profound difference. For others it won't. Hopelully, this paperhas provided te
readerwith erough information for him or her to decde how important Chaos Theay is

to his or her world view.
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Appendix A

The Logidics Equation

The logistics equabn is a camnical exanple o Chacs. Used érgely in population
biology studies, it shows how the pgulation of a spe@s canvary year, by year, based
only on the previous year’s population and the average number of offspring per adult.

As anexanple, assure the logistics equabn is used o predit fishrepopulation. The
actual population, given betweena velue d 0 ard 1, at ary future time t+1 is desgnated
xt+1. This value smply depends on the last value of the population, xt, multiplied by the
number of offspring that each adut produces m the alserce of overcrowding, A,
multiplied by a factor that represems the ‘feedlack fom effecs due ¢ dersity or
crowding”, (1-xy). Thus the logistics equation is:

Xe = AXe(1-Xer1) = A% - A
Equation 1.

Note that this is a nonlinear equéion, which, in its most basic ddinition means that the
output of the equaion is not directly or inversely proportiona to its input In this
equdion the output is proportional to the squae of the input (see Glossary definition of
nonlinea). The nodem physics educabn which the auhor was sufect to, shes away
from comprehensive treaiment of nonlinearequaions—ejceptfor the rare few that canbe

sdved wih conveniert “tricks d the trade” suchas peturbation theary—for very good
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reasms. Although dynamical (i.e., time-depemlert) nonlinear equaions canbe very
simple, asis the logistics equaton, they canproduce ‘hagy” results, suchasa siddenloss
of gahility for no obvious reason. Again, usng the logistics equaion as an example we
note that if we put set A (the number of offspring eachadut produces)betweenl ard 3,
the pqulation rises b a “saturation” level (see kgure 1) But if eachadut produces rore
than three dfspring a bfurcaton (Figure 2) occurs. (Bifurcation is arother word that
pemle seemto love to misuse. A bifurcaion refers to drasic charge n the dynamical
patern, i.e., the quanitative state of a swtem—see be Gbssay). What' s happenng is
that the pgulation overshoots a salde sdution (i.e., “booms”), so the feedlack induced
by the (1-x;) term causes he a ‘bust” the rext year, for which the feedlack agan
overcompersaes, causng arother boom and so on ard so on. Herce the saw both
patern which, in this ca® represers what is caled, petiod doubling, or period-2. Now if
we increaseA agan, to alout 3.6, the ronlinear feedlack nduces egn more dynamical
charge; the perod daubles agam to a perod-4 respaise kgure 3) It's al afunction of
feedlack. But as agone who has ewer setup their own audbp system knows, feedlack
canbe a resty thing. If the feedlack s too large r the systemto “compersate” for the
system goes urstalle; it goes Chadtic! Figure 4 $iows this “appaently random” patern.
This behavior is a function of the ronlineaity of the equabn. In fact al Chadic systens

are nonlinear Further, linear systems can't be chaétic.
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Appendix B

Fractals and Strange Attr actors

As slown eatier in this paper many Chacatic systens denonstrate anodd, “multi-
focal point” structure in phasespace cééd a stange atractor, for more complicated han
the Lorenz attractor stown in FHgure 12. Some strange atractors ae fractal. Even
though a full discussn of fracials aml strange atraciors ae autside he scpe d this
paper the following offers a lrief primer. The curous readeris ercouragedto readthe
works d Gleick ard Janes, cited in the bbliograpty, as te next logical stepin examning
the relationship between fractals and strange attractors.

Fractals are not a new conceptto most pele. Almost ewveryone canrecaynize he
eleganly intricaie Mardebrot Set first brought to light by Beroit Mandebrot ard which
seenedto grace eery science-graduae sudert’s culicle in the 1960s More formally, a
fractal can be regaded as a reasue d the degee d “roughness; “irregularty,” or
“fracionation” of an object A point has a fracial dimenson of 0, as t has o
“dimension.” A line is sad to have the fractal dimension of 1, a phre has the fracil
dimension 2, ard a tree dmensional suface las the fractal dimenson 3. Howewer a
jagged coastline will have afractal dimension between 1 and 2, a mountain range will have
adimension between 2 and 3. Fractals aso possess the qudity of being self- similar, that is

they maintain the sane degee d irregulanty at al scaks. Fractls ae ubquitous n
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nature; they are seenin clouds anl caastines, ferns ard trees. The human circulatory
system is a series of self-similar fractals from “aorta to capilfary.”

The stange atraciors d Chaaic systens ae dten fracial. This doesnot meanthat
al fractals are exanplesof Chaos. Fracial ard Chacs ae ot synonyms, as tey often are
preseied to be in the iterature (Usualy by the sane pele who useChaos ard random as
synonyms).

However, the military might be able to exploit the fractal nature of strange attractors
in the area of data compression. Devilishly intricate fractal paterns can be reproduced by
alimited set of instructions. Think of the fern plant, which is essentially the patern of one
frond multiplied over ard over agan. If one caild sem the patern of the frond, ard a
simple set of instructions as © how to reproduce the frond, one could recanstruct the
entire plant with less instructions than if ore had to ®nd the fern plant patern in its
ertirety. Asdiscussed alve, coastines ad mourtain ridges ae fracial. We've also seen
that Chadtic systens canbe gererated by very simple equatons. If we caild find the
equation that represented a coastline as seen from a satellit e and transmit only the equéion
and minimal reconstruction equaions we might be able to use less time and bandwidth on

our precious transmission links.
Notes

! Mcintosh Richard. Quality, Clausewitz and Ghaos New Sciencd ntempretationsof
Self-Similar System#ontgomery, Air War College, Air University, 1995, 22.
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Glossary

ACSC Air Command and Staff College
SIC Sensitive to Initial Conditions
USAF United States Air Force

attracors. lThe limit cycles or gates that a system settles into after its transient dynamics
die out:

bifurcation. The tendency for a system, when one controlling parameter is changed, to
drasicaly charge behavior. For exanple, a sytem that displys a sngle peirod
patern suddertly dewelops a “beat pattern. When the perod gcesfrom single to a
“double-beat” it is called doubling or period-2; a four beatpatern is caled period-4,
etc. Bifurcation often precedes the onset of Chaos.

causality. See determinism.

determinism. The belief that the future state of any system will be in can be precisely
known if eroughis known alout the cangtituerts of a sytem (the componerts it can
be “reduced @”) ard the canditions effecing that system Before Chacs Theay is
was believed that deterministic behavior always produced steady bé&havior

fractals. A measue o the degee d “roughmess; “irregularty,” or “fracionation” of an
object. A poaint has a fractal dimension of 0, as it has no “dimenson.” A line is sad
to have the fractal dimension of 1, a phre hes the fractal dimension 2, ard a tree
dimensional surface fas the fracial dimension 3. Howewer a pgged castine will have
afractal dimension between 1 and 2, a mountain range will have a dimension between
2 and 3. Fractals adso paossess the qudity of being self- similar, that is they mantain
the sane degee d irregularty atal scaks. Fracials ae ubiquitousin nature; they are
seenin clouds an caastines, ferns ard trees. The human circulatory system is a
series of self-similar fractals from “aorta to capillaty.”

Lyapunov eponents. A measuenert of how “fast’ the trajectories represened on a
phase-space plot diverge from each other.

logigics equaton. A nonlinear equaion (see nonlinear) used by biologists to describe the
population fluctuations of animal populations. The animal population, x, for a future
time t+1, in (i.e Xw.1) is equd to last value of the population, x;, mutiplied by the
number of offspring that eachadut produces m the alserce d overcrowding, A,
multiplied by a factor that represens the “feedlack fom effects due ¢ dersity or
crowding”, (1-x), to give:

Xe = AXe(L-Xer1) = A% - AXC
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mixing. The complex, interweavng of trajectories (evaluations of states) within phase-
space hat characierizes Claaic systens. Though they may appoachthe bounds of
the limit states of the atractor, and may pass infinitesmally close to other sates of
the systems, these trajectories never repeat themselves.

nonlinear. In the most basic serse, non-linearmears that the autput of a sytem is not
directy or inversely proportional to its input. Linearequaions caitain only addtion,
subtraction, multiplication or division by condants. Nonlinear operations involve
exponents, trigonometric functions am logaithms. All Chadic systens ae
nonlinear, but not all nonlinear systems are Chaotic.

non-periodic. Non-repettive, characierized ly never setling into a cbse loop behavior
in phase-space.

phase-space plots. A mears o represening the sates d a dynamic system by graphing
its evolution as a function of the minimum number of time-dependent variables of the
system.

reductionism. The pracice d amalyzing the kehavior of anertire systemas a poduct of
the behavior of its components.

sendtive to initial conditions. A smal change in an initial condition or parameter
manifests in a radically different end states.

strange attractors. The canplicated, bounded abits of trajectories of a Chaatic system
Strange atraciors pasesstlie popetty of mixing (see nixing), ard are often fractal.
It is by virtue of this long-term boundedness that dlow limited predictions to be made
by some Chaotic systems.

state. The collection of dynamical variables at a given time that describe a system.

trajectory. The time-evolution of the states of a system.

Notes

! Janes, Glem. ChaosTheoy: The Esentials for Military Applications Newpat,
R.l., Naval War College, 1995, 26.

? Gleick, Janes. Chaos Making a Nw Science New Yak, Perguin Books, 1988,
79.

® Mclntosh Richard. Quality, Clausewitz and Ghaos New Sciencd ntempretationsof
Self-Similar System#ontgomery, Air War College, Air University, 1995, 22.

* Janmes, Glem. ChaosTheoy: The Esentials for Military Applications Newpat,
R.l., Naval War College, 1995, 44.

®> May, Robert. Exploring Chaos ed. Nina Hal, New Yok ard London, W.W.
Norton and Company, 1991, 83.
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